APPROACH TO PEDIATRIC ECG

Index

6. 7. 8. 9.	First thing's first Technical Aspects
101	

1. First thing's first

- a) Check the name on the top of the ECG is this your patient?
- b) Check the date is this the one you ordered?
- c) Check for old ECGs just like a chest xray, it's always a good idea to compare with an old one
- d) Check for the age of the patient the heart physiology and the normal values differ in different age groups in the pediatric population

Note: You may want to cover the top part of the ECG sheet now. Do not rely on the computer calculated numbers; it may be wrong. Trust yourself!

2. Technical Aspects

- a) Is the ECG full standard?
 - □ Full standard means that the ECG was not reduced in size so that it can fit on the paper
 - Look at the left hand side of each line
 - □ If it is full standard, the rectangle's height should be 2 big squares

□ If it is half standard, the rectangle's height is only 1 big square. You will need to double all the waves to normalize them

- b) What is the paper speed?
 - □ The standard speed is 25mm/sec

- That means each little box is 0.04 seconds, each big box is 0.2 seconds, the whole strip is 6 seconds
- Now look at the top of the ECG, there should be a print out of what speed the ECG was ran at
- For tachyarrhythmias, the speed of the ECG may have been increased to 50 mm/sec in order to visualize the p waves; in this case, the speed and duration of the ECG components will need to be doubled

3. Rate

- a) Normal, Fast or Regular Rates
 - □ Find 2 adjacent R waves, count the number of big squares between the R's
 - □ Divide **300** by the number of big squares \rightarrow this is your rate

Or

- □ Find a QRS complex that starts on a thick line, then count the thick lines using these numbers "300-150-100-75-60-50" to the next QRS
- b) Slow or Irregular Rates
 - □ The easiest way to calculate the rate is to count the total number of QRS complex along the length of the entire strip and multiply it by $10 \rightarrow$ this is your rate (bpm)

Note: The normal value for heart rate ranges dramatically depending on your patient's age. Please compare your patient's age and heart rate with Table 1.

4. Rhythm

a) <u>Analysis</u>

Is the rhythm sinus? **Sinus** rhythm:

- Is there a P wave before each QRS complex?
- Is there a QRS complex after every P wave?
- Are the P waves upright in leads I, II, III?
- Do all P waves should look the same?
- Are all P wave axis normal (0° to +90°)?
- Are the PR intervals constant?

□ Is the rhythm fast or slow? (refer to Table 1 values)

□ Is the rhythm regular or irregular? Do the P waves and QRS follow a regular pattern?

□ If it is irregular, is it consistently irregular or consistently irregular?

Consistently irregular = some form to the pattern of irregular complex i.e. predictable **Inconsistently irregular** = no pattern at all i.e. unpredictable

Premature Atrial Contraction (PAC)	Length of two cycles (R-R) usually shorter				
	Preceded by P wave, followed by normal QRS				
	No hemodynamic significance				
Premature Ventricular Contraction (PVC)	> Premature, wide QRS, no P waves, T wave opposite to				

b) Abnormal Rhythms

	QRS				
	I.e. multifocal, bigeminy, trigeminy, couplets				
	Maybe normal if uniform and decrease with exercise				
Atrial Flutter	➢ Rapid atrial rate (~300 bpm) with varying ventricular				
	rate				
	Sawtooth pattern				
	Suggests significant pathology				
Atrial Fibrillation	Very fast atrial rate (350-600 bpm)				
	Irregularly irregular				
	No P waves, normal QRS				
	Suggests significant pathology				
Ventricular Tachycardia	Wide, unusually shaped QRS				
	T waves opposite direction of QRS				
	➢ HR 120-200 bpm				
	Suggests significant pathology				
Ventricular Fibrillation	Very irregular QRS				
	Rate is rapid and irregular				
	"terminal arrhythmia"				

5. Axis

- Axis is the "conduction flow" of the heart
- Normal axis varies with age i.e. newborns have a right axis deviation because the left and right ventricles are the same size due to fetal circulation

- Look at the QRS complex of Lead I and Lead aVF
- Is the QRS complex of Lead I more negative (downgoing or conduction away from the lead) or positive (upgoing or conduction towards the lead)?
- □ Is the QRS complex of Lead aVF more negative or positive?

Lead I Lead aVF		Axis			
+	+	Normal			
+	-	Left Axis Deviation			
-	+	Right Axis Deviation			
		Extreme Right Axis Deviation			

6. P Wave and PR Interval

- \square PR = beginning of P to beginning of QRS
- P wave normal is 2-3 little squares (0.08-0.12); if wide P wave = left atrial enlargement

- □ If P wave is taller than 2-3 little squares = right atrial enlargement
- □ PR interval is dependent on age (Table 1); if PR is wide = first degree AV block

7. QRS Complex

- □ If beginning of Q to end of S is longer than 2-3 small squares \rightarrow bundle branch block
- Look for the "M" sign in either V1 or V6
- If the "M" is on V1 \rightarrow Right bundle branch block (RBBB)

□ If the "M" is on V6 \rightarrow Left bundle branch block (LBBB)

8. QTc Interval

- Beginning of Q to end of T
- QT corrected interval for heart rate because as HR decrease, QT lengthens and vice versa
- □ Normal: <0.45 (<6 months), <0.44 (>6 months)
- □ QTc = QT / square root of RR interval
- DDx prolonged QT: long QT syndrome, hypokalemia, hypomagnesemia, hypocalcemia, neurologic injury
- Prolonged QT predisposes to ventricular tachycardia and associated with sudden death

9. T wave

- 1. DDx of peaked, pointed T = hyperkalemia, LVH
- 2. DDx of flattened T waves = hypokalemia, hypothyroidism

10. Ventricular Hypertrophy

a) Right ventricular hypertrophy

- if any of the following:
- □ R wave >98% in V1 or S wave >98% in I or V6
- □ Increased R/S ratio in V1 or decreased R/S in V6
- □ RSR' in V1 or V3R in the absence of complete RBBB
- □ Upright T wave in V1 (>3 days)
- □ Presence of Q wave in V1, V3R, V4R
- DDx of RVH: ASD, TAPVR, pulmonary stenosis, TOF, large VSD with pulmonary HTN

b) Left ventricular hypertrophy

if any of the following:

- □ R >98% in V6, S >98% in V1
- Increased R/S ratio in V6 or decreased R/S in V1
- □ Q >5mm in V6 with peaked T
- DDx: VSD, PDA, anemia, complete AV block, aortic stenosis, systemic HTN

Appendix a) Table 1: Normal Values

Age	HR bpm	QRS axis degrees	PR interval seconds	QRS interval seconds	R in V1 mm	S in V1 mm	R in V6 mm	S in V6 mm
1st week	90-160	60-180	0.08-0.15	0.03-0.08	5-26	0-23	0-12	0-10
1-3wks	100-180	45-160	0.08-0.15	0.03-0.08	3-21	0-16	2-16	0-10
1-2 mo	120-180	30-135	0.08-0.15	0.03-0.08	3-18	0-15	5-21	0-10
3-5 mo	105-185	0-135	0.08-0.15	0.03-0.08	3-20	0-15	6-22	0-10
6-11 mo	110-170	0-135	0.07-0.16	0.03-0.08	2-20	0.5-20	6-23	0-7
1-2 yr	90-165	0-110	0.08-0.16	0.03-0.08	2-18	0.5-21	6-23	0-7
3-4 yr	70-140	0-110	0.09-0.17	0.04-0.08	1-18	0.5-21	4-24	0-5
5-7 yr	65-140	0-110	0.09-0.17	0.04-0.08	0.5-14	0.5-24	4-26	0-4
8-11 yr	60-130	-15-110	0.09-0.17	0.04-0.09	0-14	0.5-25	4-25	0-4
12-15 yr	65-130	-15-110	0.09-0.18	0.04-0.09	0-14	0.5-21	4-25	0-4
> 16 yr	50-120	-15-110	0.12-0.20	0.05-0.10	0-14	0.5-23	4-21	0-4

References

- 1. Garcia, Tomas and Neil Holtz. **12-Lead ECG: The Art of Interpretation.** Jones and Bartlett Publishers Canada. 2001
- 2. Interpreting Pediatric ECG. Pediatric Cardiology at the University of Chicago. <u>http://pediatriccardiology.uchicago.edu/MP/ECG/ECG-submenue.htm</u>

Acknowledgements

Writer: Jasmine Lam